統計ER

R, EZR, SPSS, KH Coder を使ったデータ分析方法を紹介するブログ。ニッチな内容が多め

正規性

QQプロット 正規性の確認

正規性の確認は、検定は不要で、グラフで確認すればよい。 ヒストグラムが一番簡単な方法だが、もう一つグラフで確認する方法がある。 それがQQプロットだ。 QQプロットとは何か?

回帰分析に必要な仮定

目的変数が正規分布している必要はない。 説明変数も正規分布している必要はない。

EZRの散布図行列で表示される曲線グラフは何か?

EZRの散布図行列において各変数の文字が表示されているスムーズな折れ線グラフは、いったい何者だろうか? ヒストグラムを見やすくしたものなのだろうか?

EZRで連続量を正規分布にする方法 Box-Cox 変換

連続量を何らかの方法で正規分布に近づける方法はいくつかある。 よく使う方法は自然対数をとる方法だ。 ここではBox-Cox変換の方法をまとめてみた。

重回帰分析の残差は正規分布している必要がある―SPSSでの確認方法もあり

回帰分析をする際に、説明変数や目的変数が正規分布をしていないことで悩んでいる人は多い。 悩むところはそこじゃない。 重回帰分析では、残差が正規分布している必要がある。

Rで正規性の検定はどうやるか?シャピロウィルク検定はRでどうやるか?

データの正規性とは、データが正規分布しているかどうかのこと。 正規分布を前提にした統計手法が多いため、データが正規分布をしているかどうかが問題になることが多い。

回帰分析で正規分布していない場合どうすればよいか?必要なのは残差の正規性

回帰分析で正規分布していない目的変数の場合はどうすればよいか? 残差も正規分布していない場合はどうしたらよいか? >>もう統計で悩むのを終わりにしませんか? ↑1万人以上の医療従事者が購読中