統計ER

統計ソフトRの使い方を中心に、統計解析方法の解説をするブログ。ありそうでなかなか見つからないサンプルサイズ計算などニッチな方法について紹介しています。

傾向スコアマッチングを目的変数が連続量の場合にも使用することはできるか?

kaiseki daiko banner

傾向スコアマッチングは、ある因子についてランダム化していなかった観察研究データにおいて、そのある因子以外は同様にした2つのグループをマッチングで作成する方法である。

目的変数が連続量の場合でも利用可能だろうか?

答えはYesである。

傾向スコアマッチングとは?

傾向スコアとは、propensity score プロペンシティスコアとも呼ばれ、ある因子のみ異なっていて、それ以外の観察できた因子は同様な、2つのグループを作成するためのスコアである。

ロジスティック回帰を利用して傾向スコア(確率)を計算する。

傾向スコアマッチングとは、傾向スコアが近い者同士でマッチングさせる方法である。

このようにすると、着目しているある因子以外において、観察できたデータに関しては、バランスが取れた2群が作成できる。

限界としては、観察できなかった(しなかった)データはバランスをとることはできないことである。

であるので、傾向スコアは万能ではない。

傾向スコアマッチングは目的変数が連続量の場合にも使用可能か?

傾向スコアマッチングは、ロジスティック回帰やコックスの比例ハザード回帰で最終的な解析をしているところ例示しているものが多い印象だが、目的変数が連続量の場合、線形回帰(重回帰分析)で最終的な解析を実施しても構わない。

マッチングした場合は、対応のあるデータとして対応のあるt検定で解析可能だ。

また、傾向スコアマッチングをしないで、傾向スコアを共変量とした共分散分析を行うという手もある。

まとめ

傾向スコアマッチングは、観察できた因子だけという限界はあるものの、それらがバランスされた2群を、ある特定の因子に対して、作成することができる方法だ。

マッチングされたデータを作成した後は、目的変数が連続量の場合、対応のあるt検定で分析可能だ。

また、マッチングさせないで、傾向スコアそのものを共変量として解析する方法もある。

解説動画

youtu.be

参考文献

星野、岡田 2006 傾向スコアを用いた共変量調整による因果効果の推定と臨床医学・疫学・薬学・公衆衛生分野での応用について

https://www.niph.go.jp/journal/data/55-3/200655030007.pdf

下川先生 医学統計セミナー第4回 傾向スコア分析

https://waidai-csc.jp/updata/2019/05/7e3a9ea92b282ede82550e81a73c6b54.pdf

EZR公式マニュアル